Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Exp Parasitol ; 261: 108752, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604301

RESUMO

AIMS: We have previously reported reduction of anti-type II collagen (IIC) IgG levels in collagen-induced arthritis (CIA) by Schistosoma mansoni (Sm) and Trichinella spiralis (Ts). To clarify the contribution of the impairment of humoral immunity to their anti-arthritic activities, we herein investigated the relationship between anti-IIC IgG levels and arthritic swelling in Sm- or Ts-infected mice. METHODS AND RESULTS: Male DBA/1J mice were infected with Sm cercariae or Ts muscle larvae prior to the IIC immunization. In the Sm-infected mice, paw swelling and anti-IIC IgG levels were continuously lower than those of non-infected control group. In contrast, arthritic swelling in the Ts-infected mice only decreased in the early phase of CIA progression, despite the continued impairment of anti-IIC IgG production throughout the experimental period. Correlation coefficients between residual paw swelling and anti-IIC IgG titers were similar or higher in the Sm group than in the control group, but were similar or lower in the Ts group than in the control group. CONCLUSION: The down-modulations of anti-IIC IgG levels by the two parasitic infections and the correlation analyses suggest that the anti-arthritic activity of Sm was primarily attributed to the modulation of IgG-independent arthritogenic mechanisms and secondarily to the impairment of anti-IIC IgG production. In contrast, Ts could alleviate CIA mainly via the impairment of antibody production.

2.
Vet Parasitol ; : 110175, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614824

RESUMO

As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARß and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.

3.
Helminthologia ; 61(1): 40-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659468

RESUMO

The free radical nitric oxide (NO) and Ca2+ are critical regulators of skeletal muscle exercise performance and fatigue. The major source of NO in skeletal muscle cells is the neuronal form of the enzyme Nitric oxide synthase (nNOS). One of the most peculiar characteristics of the Nurse cell of Trichinella spiralis (T. spiralis) is the complete loss of the contractile capabilities of its derivative striated muscle fiber. The aim of the present study was to clarify the expression of nNOS protein and mRNA in striated muscles during the muscle phase of T. spiralis infection in mice. Muscle tissue samples were collected from mice at days 0, 14, 24, and 35 post infection (d.p.i.). The expression of nNOS was investigated by immunohistochemistry, and the expression levels of mRNA of mouse Nitric oxide synthase 1 (Nos1) by real-time PCR. The presence of nNOS protein was still well observable in the disintegrated sarcoplasm at the early stage of infection. The cytoplasm of the developing and mature Nurse cell showed the absence of this protein. At least at the beginning of the Nurse cell development, Trichinella uses the same repairing process of skeletal muscle cell, induced after any trauma and this corroborates very well our results concerning the nNOS expression on day 14 p.i. At a later stage, however, we could suggest that the down-regulation of nNOS in the Nurse cell of T. spiralis either serves a protective function or is an outcome of the genetic identity of the Nurse cell.

4.
Toxicol Res (Camb) ; 13(2): tfae047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529200

RESUMO

Trichinellosis is a parasite zoonosis that is spread through ingesting raw or undercooked meat that contains the Trichinella spiralis (T. spiralis) infective larvae. It has three clinical phases: intestinal, migratory, and muscular. Kuth root, also known as Costus (Saussurea lappa) roots, is used in many traditional medical systems all over the world to treat a variety of illnesses, such as dyspepsia, diarrhoea, vomiting, and inflammation. Current study assessed the therapeutic Potential of costus roots extract (CRE) treatment on experimental trichinellosis induce changes in DNA damage, oxidative stress and Proliferating cell nuclear antigen (PCNA) expression in muscle fibers in male rats. A total of 60 male Sprague Dawley rats were divided into 6 groups (Gps) [Gp1, Negative control; Gp2, Costus (CRE); Gp3, Positive control or Infected rats with T. spiralis, Gp4; Pre-treated infection with CRE; Gp5 & Gp6, Post treated infection with CRE for one and two weeks respectively]. Current results revealed that; Trichinella spiralis experimentally infection induced significant elevation in tissue malondialdehyde (MDA), DNA damage, PCNA expression and significant depletion in tissue glutathione (GSH), superoxide dismutase (SOD) and catalase (Cat) activities. Pre or/and post CRE treated infected rats with T. spiralis (Gp4-Gp6) induced improvements and depletion in DNA damage, PCNA expression, MDA and elevation in GSH, SOD, catalase as compared to infected rats with T. spiralis (Gp3) with best results for the pretreatments (Gp4). Trichinella spiralis experimental infection induced DNA damage and oxidative stress in rat skeletal muscles and treatments with costus roots extract modulates these changes.

5.
J Parasit Dis ; 48(1): 141-149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440755

RESUMO

Trichinosis is a serious parasitic zoonotic disease caused mainly by Trichinella spiralis. The used drugs for treatment of trichinosis showed limited bioavailability and high degree of resistance. Moreover, they have a very poor effect in treatment of encysted larvae. Therefore, there is a need for development of new agents which help in improving the bioavailability of the used drugs and enable them to reach different tissues. This study was designed to assess the use of chitosan nanoparticles (CSNPs) in conjugation with full and half dose albendazole (ABZ) in treatment of intestinal and muscular trichinosis. Albino mice (84 mice) were used to evaluate the efficacy of drugs and divided into seven groups; I: control, II: ABZ (50 mg/kg) treated, III: ABZ (25 mg/kg) treated, IV: ABZ (50 mg/kg) conjugated CSNPs treated, V: ABZ (25 mg/kg) conjugated CSNPs treated, VI: CS treated and VII: CSNPs treated. Parasitological and histopathological examinations were used to evaluate the therapeutic efficacy of the used drugs. Results showed significant reduction of adult Trichinella extracted from intestine of all ABZ treated groups either conjugated or not with the highest reduction rate in group IV followed by group V with percentage of reduction of 99.33% and 98.11%, respectively and marked improvement of histopathological examination. Also, results showed significant reduction of Trichinella larvae extracted from muscles of group IV, V and VII with the highest reduction rate in group IV with percentage of reduction of 100% in muscle larvae and marked improvement of histopathological examination. It was concluded that albendazole full dose conjugated chitosan nanoparticles can be a good candidate drug for treating both intestinal and muscular trichinosis.

6.
Sci Rep ; 14(1): 5843, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462650

RESUMO

Trichinellosis is a worldwide zoonotic disease. The majority of currently available anti-trichinellosis medications exhibit inadequate efficacy. The efficacy of a natively prepared new formulation of silver nanoparticles (Ag-NPs) was evaluated in the treatment of Trichinella spiralis (T. spiralis) infection in mice alone and combined with multivitamin-mineral (MM). After investigating the product's biological and pharmacological characteristics, its therapeutic dose was estimated to be Ag-NPs at 21.5 mg/kg B.W. This dose was orally inoculated to experimentally infected mice at 3-5 days post-inoculation (dpi) against the mature worms, at 8-10 dpi against the newborn larvae, and at 33-35th dpi against the encapsulated larvae. Each treatment's efficacy was assessed by scarifying control and treated mice 3 days post-treatment. The drug alone or in supplement form has a high trichinocidal effect exceeding that of the reference drug. Early treatment (3-5 dpi) by Ag-NPs or Ag-NPs + MM and albendazole revealed high efficacy against the intestinal stage, reaching 93.3%, 94.7%, and 90.6% for the three treatments, respectively. The materials causing a significant (P-value < 0.001) decrease in the mean encapsulated larvae reached 86.61%, 89.07%, and 88.84%/gm of muscles using the three treatments, respectively. Moreover, all larvae extracted from Ag-NPs-treated groups failed to induce infection post-inoculation in new mice. Additionally, combining the material with MM proved to overcome the reversible adverse effects of silver material on the estimated redox parameters and liver and kidney biomarkers, denoting its ability to alleviate Ag-NP toxicity. In conclusion, the high trichinocidal effect of Ag-NPs against the adult and encapsulated larvae during a short inoculation period introduced Ag-NPs as an alternative to other nematicidal drugs.


Assuntos
Nanopartículas Metálicas , Trichinella spiralis , Triquinelose , Camundongos , Animais , Prata/farmacologia , Prata/uso terapêutico , Albendazol/uso terapêutico , Larva , Vitaminas/uso terapêutico
7.
Biomed Pharmacother ; 172: 116223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325266

RESUMO

Trichinella spiralis is recognized for its ability to regulate host immune responses. The serine protease inhibitor of T. spiralis (Ts-SPI) participates in T. spiralis-mediated immunoregulatory effects. Studies have shown that helminth therapy exhibits therapeutic effects on metabolic diseases. In addition, we previously found that T. spiralis-derived crude antigens could alleviate diet-induced obesity. Thus, Ts-SPI was hypothesized to alleviate non-alcoholic fatty liver disease (NAFLD). Herein, recombinant Ts-SPI (rTs-SPI) was prepared from the muscle larvae T. spiralis. The relative molecular mass of rTs-SPI was approximately 35,000 Da, and western blot analysis indicated good immunoreactivity. rTs-SPI ameliorated hepatic steatosis, inflammation, and pyroptosis in NAFLD mice, which validated the hypothesis. rTs-SPI also reduced macrophage infiltration, significantly expanded Foxp3+ Treg population, and inactivated TLR4/NF-κB/NLRP3 signaling in the liver. Furthermore, rTs-SPI treatment significantly shifted the gut microbiome structure, with a remarkable increase in beneficial bacteria and reduction in harmful bacteria to improve gut barrier integrity. Finally, Abx-treated mice and FMT confirmed that gut-liver crosstalk contributed to NAFLD improvement after rTs-SPI treatment. Taken together, Taken together, these findings suggest that rTs-SPI exerts therapeutic effects in NAFLD via anti-inflammatory activity and gut-liver crosstalk.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Serpinas , Trichinella spiralis , Animais , Camundongos , Inibidores de Serino Proteinase , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Músculos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Parasite ; 31: 6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334686

RESUMO

Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1ß, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.


Title: Le galactomannane inhibe l'invasion par Trichinella spiralis des cellules de l'épithélium intestinal et améliore la cytotoxicité cellulaire dépendante des anticorps tuant les larves en activant la polarisation des macrophages. Abstract: Des études antérieures ont montré que la galectine recombinante de Trichinella spiralis (rTsgal) est caractérisée par un motif de séquence de domaines de reconnaissance des glucides se liant au bêta-galactoside, et que la rTsgal favorise l'invasion larvaire des cellules épithéliales intestinales. Le galactomannane est un polysaccharide immunostimulateur composé d'un squelette mannane avec des résidus galactose. Le but de cette étude était de déterminer si le galactomannane inhibe l'intrusion larvaire des cellules épithéliales intestinales et améliore la cytotoxicité cellulaire dépendante des anticorps (CCDA) tuant les larves nouvelles-nées en polarisant les macrophages au phénotype M1. Les résultats ont montré que le galactomannane se liait spécialement au rTsgal et supprimait la facilitation du rTsgal sur l'invasion larvaire des cellules épithéliales intestinales. Les résultats de la qPCR, du Western blot et de la cytométrie en flux ont montré que le galactomannane et le rTsgal activaient la polarisation des macrophages M1, comme le démontre la forte expression de l'iNOS (marqueur de M1) et des gènes liés à M1 (IL-1ß, IL-6 et TNF-α), et l'augmentation des macrophages CD86+. Le galactomannane et le rTsgal ont également augmenté la production de NO. La capacité de destruction de la CCDA médiée par les macrophages sur les larves était également significativement améliorée dans les macrophages traités au galactomannane et au rTsgal. Les résultats ont démontré que Tsgal pourrait être considéré comme une molécule cible potentielle d'un vaccin contre l'invasion par T. spiralis, et que le galactomannane pourrait être un nouvel agent thérapeutique adjuvant et un adjuvant vaccinal potentiel contre l'infection à T. spiralis.


Assuntos
Galactose/análogos & derivados , Doenças dos Roedores , Trichinella spiralis , Triquinelose , Animais , Camundongos , Mananas/farmacologia , Mananas/metabolismo , Larva/genética , Mucosa Intestinal , Citotoxicidade Celular Dependente de Anticorpos , Camundongos Endogâmicos BALB C
9.
Microsc Microanal ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323506

RESUMO

In our pursuit of an alternative drug against Trichinella spiralis, we assessed the effectiveness of nanocurcumin in alleviating pathogenesis, parasitological factors, MMP-9 levels, and its expression in the enteral and parenteral phases of infection. The nanocurcumin particles, with a spherical shape and a size of 100 ± 20 nm, were used in the study. Eighty mice were divided into four groups: the control group, the untreated infected group, the nanocurcumin-treated group, and the albendazole-treated group. The nanocurcumin-treated group exhibited a statistically significant increase in the percentage of lymphocytes, along with a reduction in neutrophils, monocytes, and eosinophils compared to the untreated, infected group. Both the nanocurcumin (87.2 and 97.3%) and the albendazole-treated groups (99.8 and 98.2%) showed a significant reduction in the mean number of intestinal worms and encysted larvae, respectively. The treated groups exhibited normal intestinal villi, suppression of the inflammatory process, and fewer instances of degenerated larvae in the diaphragm and muscle compared to the untreated, infected group. Immunohistochemistry and ELISA analyses revealed a significant downregulation of MMP-9 levels in the intestines and muscles of the treated groups. Our data demonstrate that nanocurcumin contains highly versatile molecules capable of modulating biological activity against inflammation and its pathway markers.

10.
Vet Res ; 55(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172978

RESUMO

Trichinella spiralis (T. spiralis) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.


Assuntos
Trichinella spiralis , Trichinella , Triquinelose , Animais , Triquinelose/veterinária , Proteínas de Helminto/metabolismo , Proteômica , Músculos , Larva/metabolismo , Antígenos de Helmintos , Trichinella/metabolismo
11.
Parasit Vectors ; 17(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178167

RESUMO

BACKGROUND: The excretory/secretory (ES) antigen of Trichinella spiralis muscle larvae (ML) is currently the most widely used diagnostic antigen to detect T. spiralis infection. However, this antigen has certain drawbacks, such as a complicated ES antigen preparation process and lower sensitivity during the early phase of infection. The aim of this study was to investigate the features of a novel T. spiralis trypsin (TsTryp) and evaluate its potential diagnostic value for trichinellosis. METHODS: The TsTryp gene was cloned and recombinant TsTryp (rTsTryp) expressed. Western blotting and an enzyme-linked immunosorbent assay (ELISA) were performed to confirm the antigenicity of rTsTryp. The expression pattern and distribution signature of TsTryp at various life-cycle stages of T. spiralis were analyzed by quantitative PCR, western blotting and the immunofluorescence test. An ELISA with rTsTryp and ML ES antigens was used to detect immunoglobulins G and M (IgG, IgM) in serum samples of infected mice, swine and humans. The seropositive results were further confirmed by western blot with rTsTryp and ML ES antigens. RESULTS: TsTryp expression was observed in diverse T. spiralis life-cycle phases, with particularly high expression in the early developmental phase (intestinal infectious larvae and adults), with distribution observed mainly at the nematode outer cuticle and stichosome. rTsTryp was identified by T. spiralis-infected mouse sera and anti-rTsTryp sera. Natural TsTryp protease was detected in somatic soluble and ES antigens of the nematode. In mice infected with 200 T. spiralis ML, serum-specific IgG was first detected by rTsTryp-ELISA at 8 days post-infection (dpi), reaching 100% positivity at 12 dpi, and first detected by ES-ELISA at 10 dpi, reaching 100% positivity at 14 dpi. Specific IgG was detected by rTsTryp 2 days earlier than by ES antigens. When specific IgG was determined in serum samples from trichinellosis patients, the sensitivity of rTsTryp-ELISA and ES antigens-ELISA was 98.1% (51/52 samples) and 94.2% (49/52 samples), respectively (P = 0.308), but the specificity of rTsTryp was significantly higher than that of ES antigens (98.7% vs. 95.4%; P = 0.030). Additionally, rTsTryp conferred a lower cross-reaction, with only three serum samples in total testing positive from 11 clonorchiasis, 20 cysticercosis and 24 echinococcosis patients (1 sample from each patient group). CONCLUSIONS: TsTryp was shown to be an early and highly expressed antigen at intestinal T. spiralis stages, indicating that rTsTryp represents a valuable diagnostic antigen for the serodiagnosis of early Trichinella infection.


Assuntos
Trichinella spiralis , Triquinelose , Adulto , Humanos , Suínos , Camundongos , Animais , Triquinelose/diagnóstico , Tripsina , Antígenos de Helmintos , Proteínas de Helminto , Ensaio de Imunoadsorção Enzimática/métodos , Larva/fisiologia , Estágios do Ciclo de Vida , Testes Sorológicos , Imunoglobulina G , Anticorpos Anti-Helmínticos
12.
Vet Res ; 55(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172977

RESUMO

According to numerous reports, Trichinella spiralis (T. spiralis) and its antigens can reduce intestinal inflammation by modulating regulatory immunological responses in the host to maintain immune homeostasis. Galectin has been identified as a protein that is produced by T. spiralis, and its characterization revealed this protein has possible immune regulatory activity. However, whether recombinant T. spiralis galectin (rTs-gal) can cure dextran sulfate sodium (DSS)-induced colitis remains unknown. Here, the ability of rTs-gal to ameliorate experimental colitis in mice with inflammatory bowel disease (IBD) as well as the potential underlying mechanism were investigated. The disease activity index (DAI), colon shortening, inflammatory cell infiltration, and histological damage were used as indicators to monitor clinical symptoms of colitis. The results revealed that the administration of rTs-gal ameliorated these symptoms. According to Western blotting and ELISA results, rTs-gal may suppress the excessive inflammatory response-mediated induction of TLR4, MyD88, and NF-κB expression in the colon. Mice with colitis exhibit disruptions in the gut flora, including an increase in gram-negative bacteria, which in turn can result in increased lipopolysaccharide (LPS) production. However, injection of rTs-gal may inhibit changes in the gut microbiota, for example, by reducing the prevalence of Helicobacter and Bacteroides, which produce LPS. The findings of the present study revealed that rTs-gal may inhibit signalling pathways that involve enteric bacteria-derived LPS, TLR4, and NF-κB in mice with DSS-induced colitis and attenuate DSS-induced colitis in animals by modulating the gut microbiota. These findings shed additional light on the immunological processes underlying the beneficial effects of helminth-derived proteins in medicine.


Assuntos
Colite , Microbioma Gastrointestinal , Trichinella spiralis , Animais , Camundongos , Colite/induzido quimicamente , Colite/patologia , Colite/veterinária , Colo , Modelos Animais de Doenças , Galectinas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Microb Pathog ; 186: 106489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061666

RESUMO

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a zoonotic disease that poses a substantial risk to human health. At present, vaccines used to prevent trichinellosis are effective, but the production of antibody levels and immunogenicity are low. Adjuvants can increase antibody levels and vaccine immunogenicity. As a result, it is critical to develop an effective adjuvant for the T. spiralis vaccine. Recent research has shown that traditional Chinese medicine polysaccharides with low-toxicity and biodegradability can act as adjuvants in vaccines. In this study, BALB/c mice were orally inoculated with a recombinant Lactobacillus plantarum (L. plantarum) vaccine expressing the T. spiralis cathepsin F-like protease 1 gene (rTs-CPF1), which was given three times at 10-day intervals. Lycium barbarum polysaccharide (LBP) was administered orally for 37 days. At 37 days after the first immunization, mice were infected with 350 T. spiralis muscle larvae (ML). Specific IgG and sIgA antibody levels against the T. spiralis CPF1 protein were increased in mice immunized with rTs-CPF1+LBP compared to those immunized with rTs-CPF1 alone. Furthermore, LBP increased IFN-γ and IL-4 expression levels, and the number of intestinal and intramuscular worms was significantly reduced in the rTs-CPF1+LBP group compared to that in the rTs-CPF1 group. In the rTs-CPF1+LBP group, the reduction rates of adult worms and muscle larvae were 47.31 % and 68.88 %, respectively. To summarize, LBP promotes the immunoprotective effects of the T. spiralis vaccine and may be considered as a novel adjuvant in parasitic vaccines.


Assuntos
Lactobacillus plantarum , Trichinella spiralis , Triquinelose , Camundongos , Humanos , Animais , Trichinella spiralis/genética , Triquinelose/prevenção & controle , Triquinelose/parasitologia , Catepsina F , Lactobacillus plantarum/genética , Antígenos de Helmintos/genética , Vacinas Sintéticas , Adjuvantes Imunológicos/farmacologia , Camundongos Endogâmicos BALB C
14.
Int J Biol Macromol ; 257(Pt 2): 128728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092101

RESUMO

Trichinellosis is a zoonotic parasitic disease that poses threats to human health, the meat industry, food safety, and huge financial losses. The critical stage of Trichinella spiralis (T. spiralis) infection is the invasion of intestinal larvae into the host's intestinal epithelial cells (IECs). T. spiralis Cathepsin B (TsCB) specifically interacts with IECs to facilitate the invasion of larvae. This study aims to look at how TsCB affects mouse IECs. TsCB was successfully cloned, expressed, and characterized, demonstrating its natural cysteine protease hydrolysis activity. A total of 140 proteins that interact with rTsCB were identified by GST pull-down combined with LC-MS/MS, including type I collagen, an essential component of the host's intestinal epithelial barrier system and intimately related to intestinal epithelial damage. TsCB transcription and expression levels rise, whereas type I collagen in the host's intestinal mucosa declines when the T. spiralis larvae invaded. Besides, it was discovered that TsCB bound to and degraded type I collagen of the host's intestine. This research can serve as a foundation for clarifying how T. spiralis invades the host's intestinal barrier and might provide information on potential targets for the creation of novel treatments to treat parasite illnesses.


Assuntos
Trichinella spiralis , Triquinelose , Animais , Camundongos , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Catepsina B/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Intestinos , Triquinelose/metabolismo , Triquinelose/parasitologia , Larva/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Helminto/metabolismo
15.
Int Immunopharmacol ; 127: 111320, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38064817

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) encompasses Crohn's Disease and Ulcerative Colitis. Reports have highlighted the potential use of helminths or their byproducts as a possible treatment for IBD; however, the mechanisms underlying their ability to modulate inflammation remain incompletely understood. In the present study, we analyze the possible mechanism of a serine protease inhibitor from adult T. spiralis excretion-secretion products (rTsSPI) on the improvement of colitis. METHODS: The immune protective effect of rTsSPI was studied by using DSS or Salmonella-induced colitis in female C56BL/6 mice. The effect of rTsSPI on the immune and inflammatory responses, gut microbiota, permeability of colon epithelium and junction proteins was analyzed. RESULTS: Treating mice with rTsSPI induced type 2 immunity and significantly attenuated clinical symptoms, macroscopical and histological features of DSS or bacteria-induced colonic inflammation. This was accompanied by decreasing neutrophil recruitment in the colonic lamina propria, and reducing TNF-α mRNA levels in the colon; in contrast, the recruitment of M2 macrophages, the expression level of IL-10 and adhesion molecules increased in the colon tissue. Moreover, treatment with rTsSPI led to an improvement in gut microbiota diversity, as well as an increase in the abundance of the bacterial genera Bifidobacterium and Ruminclostridium 5. CONCLUSIONS: Collective findings suggest that pretreatment with rTsSPI can ameliorate colitis in mice by inducing a Th2-type response with M2 macrophages. Data also indicate that immunotherapy with rTsSPI represents an additional strategy to ameliorate inflammatory processes in IBD by enhancing probiotic colonization and maintaining intestinal epithelial barrier function.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Trichinella , Feminino , Animais , Camundongos , Colite/induzido quimicamente , Colite/terapia , Inflamação , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
Parasitol Int ; 98: 102810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730195

RESUMO

Trichinosis spiralis is a global disease with significant economic impact. Albendazole is the current-treatment. Yet, the world-widely emerging antimicrobial resistance necessitates search for therapeutic substitutes. Curcumin is a natural compound with abundant therapeutic benefits. This study aimed to evaluate the potential of crude-curcumin, chitosan and for the first time curcumin-nano-emulsion and curcumin-loaded-chitosan-nanoparticles against Trichinella spiralis adults and larvae in acute and chronic trichinosis models. Trichinosis spiralis was induced in 96 Swiss-albino mice. Infected mice were divided into 2 groups. Group I constituted the acute model, where treatment started 2 h after infection for 5 successive days. Group II constituted the chronic model, where treatment started at the 30th day-post-infection and continued for 10 successive days (Refer to graphical abstract). Each group contained 8 subgroups that were designated Ia-Ih and IIa-IIh and included; a; Untreated-control, b; Albendazole-treated (Alb-treated), c; Crude-curcumin-treated (Cur-treated), d; Curcumin-nanoemulsion-treated (Cur-NE-treated), e; Albendazole and crude-curcumin-treated (Alb-Cur-treated), f; Albendazole and curcumin-nanoemulsion-treated (Alb-Cur-NE-treated), g; Chitosan-nanoparticles-treated (CS-NPs-treated) and h; Curcumin-loaded-chitosan-nanoparticles-treated (Cur-CS-NPs-treated). Additionally, six mice constituted control-uninfected group III. The effects of the used compounds on the parasite tegument, in-vivo parasitic load-worm burden, local pathology and MDA concentration in small intestines of acutely-infected and skeletal muscle of chronically-infected mice were studied. Results showed that albendazole was effective, yet, its combination with Cur-NE showed significant potentiation against adult worms and muscle larvae and alleviated the pathology in both models. Cur-CS-NPs exhibited promising results in both models. Crude-curcumin showed encouraging results especially against muscle larvae on long-term use. Treatments effectively reduced parasite load, local MDA level and CD31 expression with anti-inflammatory effect in intestine and muscle sections.


Assuntos
Quitosana , Curcumina , Parasitos , Trichinella spiralis , Triquinelose , Camundongos , Animais , Triquinelose/tratamento farmacológico , Triquinelose/parasitologia , Albendazol/farmacologia , Albendazol/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Quitosana/farmacologia , Quitosana/uso terapêutico , Larva
17.
Acta Trop ; 249: 107076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977254

RESUMO

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Assuntos
Catepsina C , Proteínas de Helminto , Mucosa Intestinal , Trichinella spiralis , Triquinelose , Animais , Feminino , Camundongos , Células Epiteliais/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Larva/patogenicidade , Camundongos Endogâmicos BALB C , Trichinella spiralis/genética , Trichinella spiralis/patogenicidade , Triquinelose/parasitologia , Catepsina C/genética , Catepsina C/metabolismo , Mucosa Intestinal/parasitologia
18.
Vet World ; 16(11): 2366-2373, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38152266

RESUMO

Background and Aims: Asthma, a chronic disease affecting humans and animals, has recently become increasingly prevalent and steadily widespread. The alternative treatment of asthma using helminth infections or helminth-derived immunomodulatory molecules (IMs) has been evaluated and demonstrated significant amelioration of disease severity index in vitro and in vivo. Trichinella spiralis, a parasitic nematode and its IMs, elicits a potential to relieve asthma and other immune-related disorders. In this study, we investigated the immunomodulatory function of recombinant T. spiralis novel cystatin (rTsCstN) in ameliorating acute inflammatory asthma disorders in a murine model. Materials and Methods: Female BALB/c mice were sensitized using intraperitoneal injection of ovalbumin (OVA)/alum and subsequently challenged with intranasal administration of OVA alone or OVA + rTsCstN for 3 consecutive days, producing OVA-induced allergic asthma models. To evaluate the therapeutic efficacy of rTsCstN, the inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E levels in serum were assessed. Histological alterations in the lung tissues were determined by hematoxylin and eosin (H&E) staining and eventually scored for the extent of inflammatory cell infiltration. Results: The asthmatic mouse models challenged with OVA + rTsCstN demonstrated a significant reduction of eosinophils (p < 0.01), macrophages (p < 0.05), and cytokines tumor necrosis factor-α (p < 0.05) and interferon (IFN)-γ (p < 0.05) in BALF when compared with the mice challenged with OVA alone. However, the levels of interleukin (IL)-4 and IL-10 remained unchanged. Histological examination revealed that mice administered OVA + rTsCstN were less likely to have inflammatory cell infiltration in their perivascular and peribronchial lung tissues than those administered OVA alone. Conclusion: Recombinant T. spiralis novel cystatin demonstrated immunomodulatory effects to reduce severe pathogenic alterations in asthma mouse models, encouraging a viable alternative treatment for asthma and other immunoregulatory disorders in humans and animals in the future.

19.
J Helminthol ; 97: e100, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099459

RESUMO

Trichinellosis is a re-emerging worldwide foodborne zoonosis. Oxidative stress is one of the most common detrimental effects caused by trichinellosis. In addition, Trichinella infection poses an infinite and major challenge to the host's immune system. Resistance and side effects limit the efficiency of the existing anti-trichinella medication. Given that concern, this work aimed to investigate the anti-helminthic, antioxidant, anti-inflammatory and immunomodulatory effects of resveratrol and zinc during both phases of Trichinella spiralis infection. Sixty-four Swiss albino mice were divided into four equal groups: non-infected control, infected control, infected and treated with resveratrol, and infected and treated with zinc. Animals were sacrificed on the 7th and 35th days post-infection for intestinal and muscular phase assessments. Drug efficacy was assessed by biochemical, parasitological, histopathological, immunological, and immunohistochemical assays. Resveratrol and zinc can be promising antiparasitic, antioxidant, anti-inflammatory, and immunomodulatory agents, as evidenced by the significant decrease in parasite burden, the significant improvement of liver and kidney function parameters, the increase in total antioxidant capacity (TAC), the reduction of malondialdehyde (MDA) level, the increase in nuclear factor (erythroid-derived 2)-like-2 factor expression, and the improvement in histopathological findings. Moreover, both drugs enhanced the immune system and restored the disturbed immune balance by increasing the interleukin 12 (IL-12) level. In conclusion, resveratrol and zinc provide protection for the host against oxidative harm and the detrimental effects produced by the host's defense response during Trichinella spiralis infection, making them promising natural alternatives for the treatment of trichinellosis.


Assuntos
Trichinella spiralis , Triquinelose , Camundongos , Animais , Triquinelose/parasitologia , Resveratrol/uso terapêutico , Antioxidantes/metabolismo , Zinco/farmacologia , Zinco/uso terapêutico , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo
20.
Front Cell Infect Microbiol ; 13: 1306567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145042

RESUMO

Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.


Assuntos
Trichinella spiralis , Triquinelose , Animais , Humanos , Triquinelose/diagnóstico , Antígenos de Helmintos , Proteínas de Helminto/metabolismo , Larva/fisiologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-Helmínticos , Músculos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...